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For Simon

Ghosts rising offthe lake
In to moonlight
In between
Never so alive

Norepinephrine (NE) facilitates the functioning
of many brain areas, otten by increasing "signals"
relative to "noise". In most brain regions, NE
enhances neural processing through actions at beta
and alpha-1 adrenergic receptors. This review
will provide a brief overview of the receptor
mechanisms influencing subcortical and posterior
cortical functions and contrast these actions with
the very different mechanisms by which NE
modulates the working memory functions of the
prefrontal cortex (PFC; Fig. 1).

BETA- AND ALPHA-I-ADRENOCEPTOR
STIMULATION ENHANCE POSTERIOR

CORTICAL AND SUBCORTICAL FUNCTIONS

NE has widespread effects on arousal state,
stimulus processing, and plasticity including
long-term memory consolidation. Most of these
NE actions involve beta adrenergic mechanisms,
although alpha-1 receptor stimulation also has
important effects on excitability and cortical
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plasticity. In contrast, alpha-2 receptor stimulation
often impairs stimulus processing and plasticity.
This review provides a very brief synopsis of this
research.

Arousal

NE profoundly modulates the state of
alertness through a variety of actions, many of
which involve stimulation of beta adrenergic
receptors. Beta adrenergic receptor stimulation in
the cortex produces an awake state by potently
blocking spike frequency adaptation by reducing
a potassium current, Iav (reviewed in McCormick et
al., 1991). In the thalamus, application of NE
suppresses rhythmic burst activity and switches
neurons to a single-spike firing mode, capable of
transmitting information. This effect reflects a

beta receptor-mediated enhancement of a hyper-
polarization-activated cation current, IH, and an
alpha-1 receptor-mediated suppression of a

resting leak potassium current, IKL (ibid).
Buzsaki and colleagues (1991) have shown that
stimulation of alpha-1 receptors in the thalamus
elicits an alert state, whereas stimulation of post-
synaptic alpha-2 receptors produces sedation.
Activation of the EEG in the cortex and hippo-
campus can also be produced by beta adrenergic
stimulation in the medial septal nucleus (Beridge
et al., 1996; Berridge & Foote, 1996).

(C)Freund & Pettman, U.K., 2000 133
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Fig. 1" The neurochemical needs of the PFC appear to be "upside down and backwards" from those of posterior
cortical and subcortical structures. See text for details.
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Stimulus processing

It has long been appreciated that NE enhances
the "signal/noise" processing of sensory stimuli
(Foote et al., 1975; Segal & Bloom, 1976; Water-
house et al., 1998). Waterhouse and colleagues
(Waterhouse et al., 1980; Waterhouse et al.,
1981; Mouradian et al., 1991) dissected the
receptor mechanisms underlying these effects and
found that beta adrenergic receptor stimulation
can enhance inhibitory responses, whereas alpha-1
adrenergic receptor stimulation can enhance
excitatory responses. Such effects have been
observed in a variety of brain regions, including
auditory and somatosensory cortices, cerebellum,
and hippocampus. For example, the receptive
field properties of auditory cortical neurons are
sharpened through an alpha-1 receptor
mechanism (Manunta & Edeline, 1997), whereas
the Visual field properties of eerebellar neurons
are modulated by a beta receptor mechanism
(Moises et al., 1990).

Long term memory consolidation

Beta receptor stimulation plays a critical role
in long-term memory consolidation, particularly
in the amygdala. Memory enhancement by
emotional events is thought to occur through
epinephrine release in the periphery and through
beta adrenergic receptor stimulation in the
amygdala (reviewed in Cahill & McGaugh,
1996). Thus, infusion of beta adrenergic
antagonists into the amygdala impairs long-term
memory consolidation, whereas infusion of a
beta adrenergic agonist improves memory
consolidation (ibid). Recent findings suggest that
alpha-1 adrenergic mechanisms may facilitate
beta adrenergic effects (Ferry et al., 1999). In
contrast, alpha-2 receptor stimulation impairs
memory consolidation, and the alpha-2 agonist,
clonidine, is used as an amnestic agent in basic
research (Genkova-Papazova et al., 1997).

Beta adrenergic mechanisms also contribute
to memory consolidation in the hippocampus.

For example, it has long been appreciated that
NE enhances long-term potentiation (LTP) in the
mossy fiber-CA3 synapse, via a beta adrenergic
mechanism (Hopkins & Johnston, 1988). Indeed,
beta receptor stimulation in the dentate gyrus can
actually induce LTP, even in the absence of high-
frequency stimulation (Lacaille & Harley, 1985;
Bramhan et al., 1997; Chaulk & Harley, 1998).
Alpha-1 receptor stimulation appears to contribute
as well, although these effects are not as long
lasting (Chaulk & Harley, 1998). Beta adrenergic
stimulation appears to be particularly important
for the late phase of memory consolidation
(Roullet & Sara, 1998; Sara et al., 1999), which
is thought to involve a cAMP/protein kinase A
(PKA) signaling pathway in the hippocampus
(Bevilaqua et al., 1997; also see below).
Stimulation of NE cells facilitates memory
retrieval through a beta receptor mechanism
(Devauges & Sara, 1991), and these receptor
mechanisms are also critical for memory
reactivation (Przybslawski et al., 1999). Beta
adrenergic mechanisms also appear to facilitate
long-term memory consolidation in the
entorhinal and parietal cortices (Ardenghi et al.,
1997). Alpha-1 adrenergic mechanisms appear to
have a weaker, but nonetheless beneficial, effect
on memory consolidation (Puumala et al., 1998)
and on long-term potentiation in the hippo-
campus (Pussinen & Sirvi6, 1998). In contrast to
the beneficial effects of beta and alpha-1
adrenergic receptor stimulation, administration
of alpha-2 adrenergic agonists either has no
effect or impairs memory tasks, such as the
Morris water maze, that depend on hippocampal
functioning (Sirvi6 et al., 1991) or attentional
orienting tasks that depend upon the parietal
cortex in primates (Witte & Marrocco, 1997).

More recently, several lines of research
suggest that long-term memory consolidation is
accomplished through the activation of several
intracellular signaling pathways, including
protein kinase C (PKC), PKA, MAP kinase, and
CAM kinase II (for example, Paylor et al., 1991;
Abeliovich et al., 1993; Bach et al., 1995; Abel et
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al., 1997; Bemabeu et al., 1997; Barad et al.,
1998; Bourtchouladze et al., 1998, Huang &
Kandel, 1998; Schafe et al., 1999). As beta
receptors are generally positively coupled to the
cAMP/PKA signaling pathway via Gs proteins, it
is likely that NE enhances long-term memory
processes via beta adrenergic stimulation ofPKA
(for example, Bevilaqua et al., 1997). In contrast,
alpha-2 receptors are generally coupled to Gi
proteins that reduce cAMP/PKA signaling. Thus,
alpha-2 receptor stimulation may impair long-
term memory consolidation through both pre-
synaptic mechanisms (reducing catecholamine
release) and post-synaptic mechanisms (reducing
PKA activation).

and cholinergic mechanisms appears to be critical
for plasticity of the visual cortex during
development, permitting shifts in ocular dominance
columns (Bear & Singer, 1986). In the adult
brain, NE alpha-1 mechanisms are important for
modulating long-term depression (LTD) in visual
cortical neurons (Kirkwood et al., 1999). In
contrast, alpha-2 receptor stimulation weakens
LTD, and this was thought to occur through
presynaptic reductions in NE release (ibid). The
authors speculated that NE modulation of LTD
may have a critical modulatory influence on
plasticity of receptive fields in the adult brain
and during development.

Plasticity

In addition to its beta adrenergic influences
on LTP in the hippocampus, NE has been shown
to modulate plasticity in the visual (Bear &
Singer, 1986) and somatosensory (Levin et al., 1988)
cortices. An interaction between noradrenergic

DIFFERENTIAL REGULATION OF WORKING
MEMORY FUNCTIONS OF THE

PREFRONTAL CORTEX

In contrast to the posterior cortices and
subcortical structures, the cognitive processes of
the PFC appear to be unaffected by beta
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Fig. 2: Alpha-l, but not beta receptor stimulation in the PFC impairs working memory function. Intra-PFC infusion
of the beta agonist, isoproterenol, has no effect on delayed alternation performance in rats. In contrast, intra-
PFC infusion of the alpha-1 agonist, phenylephrine, induces working memory deficits that are reversed by
co-infusion of the a6-16 antagonist, urapidil. Results represent mean+S.E.M, percent correct on the delayed
alternation task. VEH vehicle; ISO isoproterenol (0.1 ugl0.5tl); PE phenylephrine (0.1tg/0.51al);
URA urapidil (0.0 lg/0.5tl); *significantly different from vehicle + vehicle; *significantly different from
phenylephrine + vehicle (adapted from Amsten et al., 1999).
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stimulation, and are impaired by alpha-1 receptor
stimulation. Thus, the neurochemical needs of the
PFC appear to be "upside down and backwards"
from that ofthe rest ofthe brain (Fig. 1).

PFC functions

The PFC expands greatly in primates and is
critical for guiding behavior, using working
memory (Goldman-Rakic, 1987). As working
memory is constantly updated, the memories may
be called up from long-term storage or from more
recent buffers. The PFC uses these representations
to guide behavior effectively, freeing the organism
from its dependence on the environment,
inhibiting inappropriate responses or distractions,
and allowing us to plan and organize effectively
(Robbins, 1996). The PFC regulates attention,
inhibiting responses to irrelevant stimuli by
gating stimulus processing in sensory cortices
(Knight et al., 1989; Yamaguehi & Knight, 1990)
and by sustaining attention to relevant stimuli,
particularly over long delays (Chao & Knight,
1997; Wilkins et al., 1987). Animals or humans
with lesions to the PFC can exhibit poor attention
regulation, disorganized behavior, hyperactivity,
and impulsivity (Stuss et al., 1994).

Beta adrenergic mechanisms

Evidence to date indicates that beta adrenergic
mechanisms have little influence on the working
memory functions of the PFC. Neither systemic
administration (Amsten & Goldman-Rakic, 1985)
nor intra-PFC infusion (Li & Mei, 1994) of the
beta adrenergic antagonist, propranolol, alters
working memory performance in monkeys.
Similarly, infusion ofthe beta adrenergic agonist,
isoproterenol (0.1 tg/0.5BL) into the medial PFC
in rats has no effect on working memory
performance in a T maze (Fig. 2). More detailed
studies with selective beta 1 or beta 2 agents may
produce different results, but current evidence
suggests little involvement of beta adrenoceptor
mechanisms in PFC function.

Alpha-2 adrenergic mechanisms

Although beta adrenergic receptors appear to
have little influence on working memory, stimulation
of post-synaptic alpha-2 adrenergic receptors has
marked beneficial effects on PFC function (Fig. 3).
Alpha-2-adrenoceptor agonists, such as clonidine,
guanfacine, or meditomidine, administered either
systemically (Amsten & Goldman-Rakic, 1985;
Amsten et al., 1988; Carlson et al., 1992; Rama et al.,
1996; Franowicz & Amsten, 1998) or directly
into the PFC (Tanila et al., 1996; Amsten, 1997; Mao
et al., 1999) improve working memory performance
in monkeys (Fig. 3A) and in rats. Guanfacine has
also been shown to enhance the performance of
an object reversal task, a test of response
inhibition that depends upon the functional
integrity of the orbital PFC (Fig. 3B; Steere &
Amsten, 1997). The effects are blocked by co-
administration of alpha-2 antagonists, such as
yohimbine, which by themselves impair working
memory performance (Amsten & Goldman-
Rakic, 1985; Li & Mei, 1994). Thus, intra-PFC
infusion of an alpha-2, but not a beta or alpha-1
antagonist, produces a delay-related impairment
in working memory performance in monkeys (Li
& Mei, 1994). Evidence indicates that alpha-2
agents alter working memory through actions at
post-synaptic alpha-2 receptors. For example,
alpha-2 agonists are more potent and more
efficacious in animals with catecholamine depletion
(Amsten & Goldman-Rakic, 1985; Cai et al., 1993).
Evidence also suggests that the alpha-2A receptor
subtype is likely to be the receptor underlying
beneficial effects on working memory, from
pharmacological profiles (Amsten et al., 1988;
Amsten & Leslie, 1991; Rama et al., 1996), and
from results in mice with genetically altered
alpha-2 receptors (Franowicz et al., 1998; Tanila
et al., 1999). The cognitive-enhancing effects of
alpha-2 agonists can be completely dissociated
from their sedating and hypotensive actions
(Amsten et al., 1988), which most likely occurs
in different brain regions. Alpha-2 agonist-
enhancing effects are particularly prominent under
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conditions of high interference or distraction,
conditions that require PFC function for optimal
performance (Jackson & Buccafusco, 1991; Amsten
& Contant, 1992).

The importance of drug actions in the PFC
for working memory enhancemem has recently
been confirmed in electrophysiological studies of
monkeys performing working memory tasks.

Delay-related firing, namely, an increased rate of
firing during the delay period relative to
spontaneous activity, is thought to reflect the
cellular basis of working memory function
(Funahashi et al., 1989). Iontophoresis of the
alpha-2 antagonist, yohimbine, onto PFC neurons
reduces delay-related firing (Sawaguchi, 1998; Li
et al., 1999). Conversely, systemic administration
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Fig. 3:Alpha-2 receptor stimulation enhances working memory and response-inhibition functions of the PFC.
A. The alpha-2A agonist, guanfacine, improves spatial working memory performance in aged monkeys. The
improvement with guanfacine is reversed by the alpha-2 antagonist, idazoxan (adapted from Arnsten et al.,
1988). B. Guanfacine improves response inhibition as measured by reversal of object discrimination
performance; the improvement is reversed by the alpha-2 antagonist, idazoxan (adapted from Steere &
Arnsten, 1997). For both graphs, results represent mean + S.E.M. change from saline. SAL saline, GFC
guanfacine, IDA idazoxan, *significantly different from saline, **significantly different from guanfacine.
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of the alpha-2 agonist, elonidine, increases delay-
related activity, and this enhancement is reversed
by iontophoresis of yohimbine onto the PFC
neuron (Li et al., 1999). Taken together, the results
at the cellular and behavioral level indicate that
NE actions at alpha-2 receptors in PFC play an
important role in facilitating working memory
function.

Accumulating evidence indicates that the
beneficial effects of alpha-2 agonists on PFC
function in animals extend to humans as well.
Earlier literature showed that the alpha-2 agonist,
elonidine, could improve PFC deficits in patients
with Korskoff’s amnesia (Mair & McEntree, 1986)
or with Attention Deficit Hyperactivity Disorder
(ADHD; Hunt et al., 1985), but the side effects
of this agent have limited its clinical use.
Interestingly, clonidine improves memory and
Trails B performance in schizophrenic patients
(Fields et al., 1988), suggesting that the PFC
deficits in this disorder may respond to alpha-2
agonist stimulation. Similarly, a recent study has
shown that clonidine can improve word fluency
and working memory in Alzheimer’s patients
(Riekkinen & Riekkinen, 1999), and researchers
have suggested that alpha-2 agonists may provide
an important adjunctive therapy in Alzheimer’s
disease (Haroutunian et al., 1990). The effects of
clonidine in healthy young adults have been
more complex. Higher doses that are thought to
improve PFC function were often not given to
normal individuals because of problematic side
effects, and studies using lower clonidine doses
have shown mixed effects on cognitive function
(Coull, 1994; Coull et al., 1995; Jakala et al.,
1999a; Jakala et al., 1999b). Imaging studies with
clonidine showed enhanced frontal function in
Korsakoff’s patients (Moffoot et al., 1994), but
studies of normal individuals with lower doses of
clonidine generally showed changes in the
thalamus that are likely to be related to the
sedating actions of clonidine (Coull et al., 1997).
Recent studies in humans of the more selective
alpha-2A agonist, guanfacine, have been more
successful in enhancing PFC function, with

fewer side effects, similar to studies in animals.
Guanfacine improves working memory and other
PFC functions in young adults (Jakala et al.,
1999a; Jakala et al., 1999b). Guanfacine has been
shown to improve ADHD symptoms and PFC
task performance in both open label (Chappell et
al., 1995; Horrigan & Bamhill, 1995; Hunt et al.,
1995) and controlled trials (F. Taylor, personal com-
munication; L. Scahill, personal communication),
and is now being tested in other PFC cognitive
disorders. Thus, alpha-2A receptor stimulation
may have therapeutic effects in disorders with
PFC cognitive deficits.

Alpha-1 adrenergic mechanisms

In contrast to the beneficial effects of alpha-2
receptors, recent studies suggest that alpha-1
adrenoceptor stimulation markedly impairs PFC
function. In rats, infusions of the alpha-1 agonist,
phenylephrine, into the PFC produced large
deficits in working memory performance (Fig. 2;
Amsten et al., 1999). This impairment was reversed
by the co-infusion of the alpha-1 receptor
antagonist, urapidil, consistent with actions at
alpha-1 receptors. Similar effects have been
observed in monkeys performing the delayed
response task, a test of spatial working memory
that is dependent on the dorsolateral PFC
surrounding the principal sulcus (Mao et al.,
1999). Infusions of phenylephrine produced a
delay-related impairment in working memory
performance. Infusions were most effective in the
caudal two-thirds of the principal sulcal cortex
(ibid), the cortical region most tightly associated
with spatial working memory performance in
monkeys (Goldman & Rosvold, 1970).

Alpha-1 receptors are generally coupled to the
phosphotidyl inositol/PKC intracellular pathway
via Gq proteins (Duman & Nestler, 1995), and
evidence to date suggests that alpha-1 receptor
stimulation impairs PFC function through the
activation of this second messenger pathway. For
example, the cognitive impairment induced by
phenylephrine infusions into the rat PFC can be
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completely reversed by pretreatment with a dose
of lithium, known to suppress phosphotidyl
inositol turnover (Amsten et al., 1999). These
data may have special relevance to bipolar
disorder, a disorder commonly treated with
lithium and associated with increased NE
turnover. Lithium, however, can alter other
second messenger pathways; thus, current studies
in animals are focusing on agents that selectively
target molecules in the phosphotidyl inositol/

PKC cascade. For example, intra-PFC infusion of
the PKC inhibitor, chelerythrine, appears to block
the detrimental effects of alpha-1 agonists (S.
Bimbaum & A. Amsten, unpublished). The
results are consistent with the activation of the
phosphotidyl inositol/PKC pathway underlying
alpha-1 receptor-mediated impairment of PFC
working memory function. These findings
contrast with those of studies showing that long-
term memory consolidation is enhanced by
activating PKC signaling pathways in such brain
regions as the hippocampus (for example.
Abeliovich et al., 1993). The finding that alpha-
receptor stimulation impairs PFC function is
likely to be relevant to the PFC cognitive deficits
observed in rats, monkeys, and humans that are
exposed to uncontrollable stress. Even relatively
mild stressors can impair working memory and
other PFC functions (reviewed in Amsten &
Goldman-Rakic, 1998). Although most of this
research has focused on the role of high levels of
dopamine-receptor stimulation in the stress
response, NE is also released in the PFC during
stress exposure (Finlay et al., 1995; Goldstein et
al., 1996). Recent results demonstrate that NE
alpha-1 receptor mechanisms also contribute to
stress-induced working memory deficits, as intra-
PFC infusion of the alpha-1 antagonist, urapidil,
protected performance from the detrimental
effects of stress (Bimbaum et al., 1999). It is
likely that during stress exposure, NE and
dopamine mechanisms synergize to take the PFC
"off-line". Recent results suggest that dopamine
may impair working memory performance via
the activation ofD1 receptors (Zahrt et al., 1997)

that are coupled to the cAMP/PKA pathway
(Taylor et al., 1999). Thus, whereas the activation
of PKA and PKC intracellular signaling pathways
in posterior cortical and subcortical areas may
enhance long-term memory consolidation, in PFC
these pathways appear to impair working memory
processes.

ADAPTIVE VALUE OF PFC DYSFUNCTION
DURING STRESS

Although PFC cognitive functions are often
essential for successful organization of high
order behavior, under certain conditions, for
example acute danger, when it may be adaptive to
"shut down" these complex, reflective operations
and to allow more automatic or habitual responses,
dependent on posterior cortical and subcortical
structures, to control our behavior (Amsten,
1998; Amsten & Goldman-Rakic, 1998). Studies
of the effects of stress on higher cognitive
functioning in humans have illustrated that many
of the cognitive abilities that are now associated
with the PFC are impaired by exposure to stress
(Hockey, 1970; Broadbent, 1971; Hartley &
Adams, 1974), particularly when the subject
feels no control over the stressor (for example
see Glass et al., 1971), whereas highly trained or
prepotent responses can actually improve with
stress (Broadbent, 1971). Possibly, many of these
changes in performance during stress result from
increased catecholamine release during stress
exposure. Increased catecholamine release during
stress is thought to be triggered by the amygdala,
which projects to the catecholamine cells
(Goldstein et al., 1996). Increased catecholamine
release during stress may enhance the functions
of the posterior cortices and many subcortical
areas through actions at beta and/or alpha-1
receptors, while impairing prefrontal cortical
function through actions at alpha-1 receptors. For
example, increased catcholamine release during
stress would enhance our long-term memory of
an aversive event so that we might avoid it in the
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future, and this enhanced memory consolidation
would likely involve increased beta-receptor
stimulation in the amygdala (Cahill et al., 1994)
and in the hippocampus (Packard & Teather,
1998). Increased catecholamine release during
stress might also alter attentional regulation,
allowing attention to be "captured" by prominent
stimuli in the environment. For example, in his
study of humans exposed to loud noise stress,
Hockey (1970) showed that stress (a) narrows the

focus of attention onto salient signals, but
(b) makes attention more labile (namely, impaired
ability to sustain attention). These changes in
attentional regulation may occur by (a)beta/
alpha-1 receptor enhancement of signal processing
in sensory cortices, and (b)alpha-1 receptor
impairment ofPFC, respectively. This hypothesis
is consistent with the affinity of NE for the
adrenergic receptors (Fig. 4). NE has a much
higher affinity for alpha-2A than for alpha-1 or

AFFINITY OF NE AT ADRENERGIC RECEPTORS

LOWER LEVELS NE:
IMPROVES PFC

IMPAIRS POST. CTX.

alpha.2A
56nM

HIGHER LEVELS NE:
IMPAIRS PFC

IMPROVES POST. CTX.

> beta.2
740 nM

Fig. 4: NE has higher affinity for alpha-2A receptors (O’Rourke et al., 1994) than for alpha-1 receptors (Mohell et

al., 1983) or beta receptors (Pepperl & Regan, 1994). Thus, lower, basal levels ofNE release may engage
alpha-2A receptors and facilitate PFC function, while high levels ofNE release during stress may be needed
to engage alpha-1 receptors and impair PFC function. Conversely, high levels ofNE engaging alpha-1 and
beta receptors would enhance the functions ofthe amygdala, hippocampus, and posterior cortices.
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beta receptors. Thus, lower levels of NE release
(during normal waking, for example) may engage
alpha-2 receptors and enhance the PFC
regulation of behavior. During stress, however,
higher levels ofNE would be released, engaging
alpha-1 receptors and impairing PFC function
while enhancing the abilities of the posterior
cortices and subcortical structures through
actions at beta and/or alpha-1 receptors. This
neurochemical "switch" may be helpful under many
conditions, for example, during dangerous
circumstances that require rapid responding to
stimuli in the environment, but may be
problematic when PFC regulation of behavior is
required. For example, such a switch would be
maladaptive under stressful conditions, such as a
very difficult math exam, where salient stimuli

(for example, voices outside the window) often
must be ignored, and attention must be sustained
on less compelling stimuli (for example, the math
exam). The discovery of neurochemical mechanisms
that actively impair PFC function may help to

explain why deficits in PFC function are
prevalent in most neuropsychiatric disorders, and
why such disorders are often precipitated or
exacerbated by exposure to stress (Mazure, 1995).

In summary, a balance may exist between the
anterior versus posterior cortical systems in the
control of our behavior. The tipping of this
"seesaw" may depend upon our perceived state
of the environment, which is then reflected by
the levels of NE release. Simply stated, PFC
regulation of behavior may prevail when we

perceive ourselves as safe and NE release is

modest, whereas posterior cortical and sub-
cortical systems may prevail when we perceive
ourselves to be in danger and NE release is high.
The tipping of this balance may be accomplished
by the differential affinity ofNE for its receptors.
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